Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Front Immunol ; 15: 1330536, 2024.
Article in English | MEDLINE | ID: mdl-38545104

ABSTRACT

Introduction: Alcohol-related liver disease (ARLD) accounts for over one third of all deaths from liver conditions, and mortality from alcohol-related liver disease has increased nearly five-fold over the last 30 years. Severe alcohol-related hepatitis almost always occurs in patients with a background of chronic liver disease with extensive fibrosis or cirrhosis, can precipitate 'acute on chronic' liver failure and has a high short-term mortality. Patients with alcohol-related liver disease have impaired immune responses, and increased susceptibility to infections, thus prompt diagnosis of infection and careful patient management is required. The identification of early and non-invasive diagnostic and prognostic biomarkers in ARLD remains an unresolved challenge. Easily calculated predictors of infection and mortality are required for use in patients who often exhibit variable symptoms and disease severity and may not always present in a specialized gastroenterology unit. Methods: We have used a simple haematological analyser to rapidly measure circulating myeloid cell parameters across the ARLD spectrum. Results and Discussion: We demonstrate for the first time that immature granulocyte (IG) counts correlate with markers of disease severity, and our data suggests that elevated counts are associated with increased short-term mortality and risk of infection. Other myeloid populations such as eosinophils and basophils also show promise. Thus IG count has the potential to serve alongside established markers such as neutrophil: lymphocyte ratio as a simply calculated predictor of mortality and risk of infectious complications in patients with alcohol-related hepatitis. This would allow identification of patients who may require more intensive management.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases , Humans , Prognosis , Liver Diseases/complications , Liver Cirrhosis/complications , Leukocyte Count
2.
Geroscience ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528176

ABSTRACT

An increase in systemic inflammation (inflammaging) is one of the hallmarks of aging. Epigenetic (DNA methylation) clocks can quantify the degree of biological aging and this can be reversed by lifestyle and pharmacological intervention. We aimed to investigate whether a multi-component nutritional supplement could reduce systemic inflammation and epigenetic age in healthy older adults.We recruited 80 healthy older participants (mean age ± SD: 71.85 ± 6.23; males = 31, females = 49). Blood and saliva were obtained pre and post a 12-week course of a multi-component supplement, containing: Vitamin B3, Vitamin C, Vitamin D, Omega 3 fish oils, Resveratrol, Olive fruit phenols and Astaxanthin. Plasma GDF-15 and C-reactive protein (CRP) concentrations were quantified as markers of biological aging and inflammation respectively. DNA methylation was assessed in whole blood and saliva and used to derive epigenetic age using various clock algorithms.No difference between the epigenetic and chronological ages of participants was observed pre- and post-treatment by the blood-based Horvath or Hannum clocks, or the saliva-based InflammAge clock. However, in those with epigenetic age acceleration of ≥ 2 years at baseline, a significant reduction in epigenetic age (p = 0.015) and epigenetic age acceleration (p = 0.0058) was observed post-treatment using the saliva-based InflammAge clock. No differences were observed pre- and post-treatment in plasma GDF-15 and CRP, though participants with CRP indicative of an elevated cardiovascular disease risk (hsCRP ≥ 3µg/ml), had a reduction in CRP post-supplementation (p = 0.0195).Our data suggest a possible benefit of combined nutritional supplementation in individuals with an accelerated epigenetic age and inflammaging.

3.
Exp Gerontol ; 187: 112365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237747

ABSTRACT

Ageing is accompanied by a decline in immune function (immunosenescence), increased inflammation (inflammaging), and more senescent cells which together contribute to age-related disease and infection susceptibility. The innate immune system is the front-line defence against infection and cancer and is also involved in the removal of senescent cells, so preventing innate immunosenescence and inflammaging is vital for health in older age. Extracellular vesicles (EVs) modulate many aspects of innate immune function, including chemotaxis, anti-microbial responses, and immune regulation. Senescent cell derived EVs (SEVs) have different cargo to that of non-senescent cell derived EVs, suggesting alterations in EV cargo across the lifespan may influence innate immune function, possibly contributing to immunosenescence and inflammaging. Here we review current understanding of the potential impact of miRNAs, lipids and proteins, found in higher concentrations in SEVs, on innate immune functions and inflammation to consider whether SEVs are potential influencers of innate immunosenescence and inflammaging. Furthermore, senolytics have demonstrated an ability to return plasma EV content closer to that of non-senescent EVs, therefore the potential use of senotherapeutics (senolytics and senostatics) to ameliorate the effects of SEVs on immunosenescence and inflammaging is also considered as a possible strategy for extending health-span in older adults.


Subject(s)
Extracellular Vesicles , Immunosenescence , Humans , Aged , Senotherapeutics , Immunosenescence/physiology , Aging/physiology , Inflammation/metabolism , Extracellular Vesicles/metabolism , Cellular Senescence/physiology
4.
J Allergy Clin Immunol ; 153(1): 320-329.e8, 2024 01.
Article in English | MEDLINE | ID: mdl-37678576

ABSTRACT

BACKGROUND: Electronic cigarette (e-cigarette) use continues to rise despite concerns of long-term effects, especially the risk of developing lung diseases such as chronic obstructive pulmonary disease. Neutrophils are central to the pathogenesis of chronic obstructive pulmonary disease, with changes in phenotype and function implicated in tissue damage. OBJECTIVE: We sought to measure the impact of direct exposure to nicotine-containing and nicotine-free e-cigarette vapor on human neutrophil function and phenotype. METHODS: Neutrophils were isolated from the whole blood of self-reported nonsmoking, nonvaping healthy volunteers. Neutrophils were exposed to 40 puffs of e-cigarette vapor generated from e-cigarette devices using flavorless e-cigarette liquids with and without nicotine before functions, deformability, and phenotype were assessed. RESULTS: Neutrophil surface marker expression was altered, with CD62L and CXCR2 expression significantly reduced in neutrophils treated with e-cigarette vapor containing nicotine. Neutrophil migration to IL-8, phagocytosis of Escherichia coli and Staphylococcus aureus pHrodo bioparticles, oxidative burst response, and phorbol 12-myristate 13-acetate-stimulated neutrophil extracellular trap formation were all significantly reduced by e-cigarette vapor treatments, independent of nicotine content. E-cigarette vapor induced increased levels of baseline polymerized filamentous actin levels in the cytoplasm, compared with untreated controls. CONCLUSIONS: The significant reduction in effector neutrophil functions after exposure to high-power e-cigarette devices, even in the absence of nicotine, is associated with excessive filamentous actin polymerization. This highlights the potentially damaging impact of vaping on respiratory health and reinforces the urgency of research to uncover the long-term health implications of e-cigarettes.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Pulmonary Disease, Chronic Obstructive , Humans , Neutrophils , E-Cigarette Vapor/metabolism , E-Cigarette Vapor/pharmacology , Nicotine/adverse effects , Nicotine/metabolism , Actins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
5.
Front Immunol ; 14: 1239683, 2023.
Article in English | MEDLINE | ID: mdl-37662933

ABSTRACT

Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.


Subject(s)
Cross Infection , Infertility , Humans , Immunosuppression Therapy , Immunomodulation , Alarmins
6.
Res Pract Thromb Haemost ; 7(4): 100177, 2023 May.
Article in English | MEDLINE | ID: mdl-37333992

ABSTRACT

Background: Tissue factor (TF) is essential for hemostasis. TF-expressing extracellular vesicles (TF+ EVs) are released in pathological conditions, such as trauma and cancer, and are linked to thrombosis. Detection of TF+ EV antigenically in plasma is challenging due to their low concentration but may be of clinical utility. Objectives: We hypthesised that ExoView can allow for direct measurement of TF+ EV in plasma, antigenically. Methods: We utilized the anti-TF monoclonal antibody 5G9 to capture TF EV onto specialized ExoView chips. This was combined with fluorescent TF+ EV detection using anti-TF monoclonal antibody IIID8-AF647. We measured tumor cell-derived (BxPC-3) TF+ EV and TF+ EVs from plasma derived from whole blood with or without lipopolysaccharide (LPS) stimulation. We used this system to analyze TF+ EVs in 2 relevant clinical cohorts: trauma and ovarian cancer. We compared ExoView results with an EV TF activity assay. Results: BxPC-3-derived TF+ EVs were identified with ExoView using 5G9 capture with IIID8-AF647 detection. 5G9 capture with IIID8-AF647 detection was significantly higher in LPS+ samples than in LPS samples and correlated with EV TF activity (R2 = 0.28). Trauma patient samples had higher levels of EV TF activity than healthy controls, but activity did not correlate with TF measurements made by ExoView (R2 = 0.15). Samples from patients with ovarian cancer have higher levels of EV TF activity than those from healthy controls, but activity did not correlate with TF measurement by ExoView (R2 = 0.0063). Conclusion: TF+ EV measurement is possible in plasma, but the threshold and potential clinical applicability of ExoView R100, in this context, remain to be established.

7.
Eur J Endocrinol ; 188(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36809311

ABSTRACT

OBJECTIVE: Trauma-induced steroid changes have been studied post-hospital admission, resulting in a lack of understanding of the speed and extent of the immediate endocrine response to injury. The Golden Hour study was designed to capture the ultra-acute response to traumatic injury. DESIGN: We conducted an observational cohort study including adult male trauma patients <60 years, with blood samples drawn ≤1 h of major trauma by pre-hospital emergency responders. METHODS: We recruited 31 adult male trauma patients (mean age 28 [range 19-59] years) with a mean injury severity score (ISS) of 16 (IQR 10-21). The median time to first sample was 35 (range 14-56) min, with follow-up samples collected 4-12 and 48-72 h post-injury. Serum steroids in patients and age- and sex-matched healthy controls (HCs) (n = 34) were analysed by tandem mass spectrometry. RESULTS: Within 1 h of injury, we observed an increase in glucocorticoid and adrenal androgen biosynthesis. Cortisol and 11-hydroxyandrostendione increased rapidly, whilst cortisone and 11-ketoandrostenedione decreased, reflective of increased cortisol and 11-oxygenated androgen precursor biosynthesis by 11ß-hydroxylase and increased cortisol activation by 11ß-hydroxysteroid dehydrogenase type 1. Active classic gonadal androgens testosterone and 5α-dihydrotestosterone decreased, whilst the active 11-oxygenated androgen 11-ketotestosterone maintained pre-injury levels. CONCLUSIONS: Changes in steroid biosynthesis and metabolism occur within minutes of traumatic injury. Studies that address whether ultra-early changes in steroid metabolism are associated with patient outcomes are now required.


Subject(s)
Androgens , Hydrocortisone , Adult , Humans , Male , Young Adult , Middle Aged , Androgens/metabolism , Cohort Studies , Steroids/therapeutic use , Dihydrotestosterone
9.
Immun Ageing ; 19(1): 60, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471343

ABSTRACT

BACKGROUND: Traumatic injury elicits a hyperinflammatory response and remodelling of the immune system leading to immuneparesis. This study aimed to evaluate whether traumatic injury results in a state of prematurely aged immune phenotype to relate this to clinical outcomes and a greater risk of developing additional morbidities post-injury. METHODS AND FINDINGS: Blood samples were collected from 57 critically injured patients with a mean Injury Severity Score (ISS) of 26 (range 15-75 years), mean age of 39.67 years (range 20-84 years), and 80.7% males, at days 3, 14, 28 and 60 post-hospital admission. 55 healthy controls (HC), mean age 40.57 years (range 20-85 years), 89.7% males were also recruited. The phenotype and frequency of adaptive immune cells were used to calculate the IMM-AGE score, an indicator of the degree of phenotypic ageing of the immune system. IMM-AGE was elevated in trauma patients at an early timepoint (day 3) in comparison with healthy controls (p < 0.001), driven by an increase in senescent CD8 T cells (p < 0.0001), memory CD8 T cells (p < 0.0001) and regulatory T cells (p < 0.0001) and a reduction in naïve CD8 T cells (p < 0.001) and overall T cell lymphopenia (p < 0 .0001). These changes persisted to day 60. Furthermore, the IMM-AGE scores were significantly higher in trauma patients (mean score 0.72) that developed sepsis (p = 0.05) in comparison with those (mean score 0.61) that did not. CONCLUSIONS: The profoundly altered peripheral adaptive immune compartment after critical injury can be used as a potential biomarker to identify individuals at a high risk of developing sepsis and this state of prematurely aged immune phenotype in biologically young individuals persists for up to two months post-hospitalisation, compromising the host immune response to infections. Reversing this aged immune system is likely to have a beneficial impact on short- and longer-term outcomes of trauma survivors.

10.
Cells ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139476

ABSTRACT

Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.


Subject(s)
COVID-19 , Neutrophils , B7-H1 Antigen , COVID-19/immunology , Cell-Free Nucleic Acids , Deoxyribonucleases , Humans , Interleukin-6/pharmacology , Neutrophils/cytology , Phenotype , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species/metabolism , SARS-CoV-2
11.
J Plast Reconstr Aesthet Surg ; 75(8): 2616-2624, 2022 08.
Article in English | MEDLINE | ID: mdl-35599217

ABSTRACT

BACKGROUND: Major thermal injury induces a complex pathophysiological state characterized by burn shock and hypercatabolism. Steroids are used to modulate these post-injury responses. However, the effects of steroids on acute post-burn outcomes remain unclear. METHODS: In this study of 52 thermally injured adult patients (median total burn surface area 42%, 33 males and 19 females), the effects of corticosteroid and oxandrolone on mortality, multi-organ failure (MOF), and sepsis were assessed individually. Clinical data were collected at days 1, 3, 7, and 14 post-injury. RESULTS: Twenty-two (42%) and 34 (65%) burns patients received corticosteroids and oxandrolone within the same cohort, respectively. Following separate analysis for each steroid, corticosteroid use was associated with increased odds of in-hospital mortality (OR 3.25, 95% CI: 1.32-8•00), MOF (OR 2.36, 95% CI: 1.00-1.55), and sepsis (OR 5.95, 95% CI: 2.53-14.00). Days alive (HR 0.32, 95% CI: 0.18-0.60) and sepsis-free days (HR 0.54, 95% CI: 0.37-0.80) were lower among corticosteroid-treated patients. Oxandrolone use was associated with reduced odds of 28-day mortality (OR 0.11, 95% CI: 0.04-0.30), in-hospital mortality (OR 0.19, 95% CI: 0.08-0.43), and sepsis (OR 0.24, 95% CI: 0.08-0.69). Days alive, at 28 days (HR 6.42, 95% CI: 2.77-14.9) and in-hospital (HR 3.30, 95% CI: 1.93-5.63), were higher among the oxandrolone-treated group. However, oxandrolone was associated with increased MOF odds (OR 7.90, 95% CI: 2.89-21.60) and reduced MOF-free days (HR 0.23, 95% CI: 0.11-0.50). CONCLUSION: Steroid therapies following major thermal injury may significantly affect patient prognosis. Oxandrolone was associated with better outcomes except for MOF. Adverse effects of corticosteroids and oxandrolone should be considered when managing burn patients.


Subject(s)
Anabolic Agents , Sepsis , Adult , Anabolic Agents/adverse effects , Cohort Studies , Female , Hospital Mortality , Humans , Male , Oxandrolone/pharmacology , Oxandrolone/therapeutic use , Sepsis/drug therapy
12.
Burns Trauma ; 9: tkab032, 2021.
Article in English | MEDLINE | ID: mdl-34692855

ABSTRACT

BACKGROUND: Low molecular-weight heparin (LMWH) is routinely administered to burn patients for thromboprophylaxis. Some studies have reported heparin resistance, yet the mechanism(s) and prevalence have not been systematically studied. We hypothesized that nucleosomes, composed of histone structures with associated DNA released from injured tissue and activated immune cells in the form of neutrophil extracellular traps (NETs or NETosis), neutralize LMWH resulting in suboptimal anticoagulation, assessed by reduction in anti-factor Xa activity. METHODS: Blood was sampled from >15% total body surface area (TBSA) burn patients receiving LMWH on days 5, 10 and 14. Peak anti-factor Xa (AFXa) activity, anti-thrombin (ATIII) activity, cell-free DNA (cfDNA) levels and nucleosome levels were measured. Mixed effects regression was adjusted for multiple confounders, including injury severity and ATIII activity, and was used to test the association between nucleosomes and AFXa. RESULTS: A total of 30 patients with severe burns were included. Mean TBSA 43% (SD 17). Twenty-three (77%) patients were affected by heparin resistance (defined by AFXa activity <0.2 IU/mL). Mean peak AFXa activity across samples was 0.18 IU/mL (SD 0.11). Mean ATIII was 81.9% activity (SD 20.4). Samples taken at higher LWMH doses were found to have significantly increased AFXa activity, though the effect was not observed at all doses, at 8000 IU no samples were heparin resistant. Nucleosome levels were negatively correlated with AFXa (r = -0.29, p = 0.050) consistent with the hypothesis. The final model, with peak AFXa as the response variable, was adjusted for nucleosome levels (p = 0.0453), ATIII activity (p = 0.0053), LMWH dose pre-sample (p = 0.0049), drug given (enoxaparin or tinzaparin) (p = 0.03), and other confounders including severity of injury, age, gender, time point of sample. CONCLUSIONS: Heparin resistance is a prevalent issue in severe burns. Nucleosome levels were increased post-burn, and showed an inverse association with AFXa consistent with the hypothesis that they may interfere with the anticoagulant effect of heparin in vivo and contribute to heparin resistance. Accurate monitoring of AFXa activity with appropriate therapy escalation plans are recommended with dose adjustment following severe burn injury.

13.
BMJ Open ; 11(10): e052035, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686556

ABSTRACT

INTRODUCTION: Burn-induced changes in the phenotype and function of neutrophils, cells which provide front-line protection against rapidly dividing bacterial infections, are emerging as potential biomarkers for the early prediction of sepsis. In a longitudinal study of adult burns patients, we recently demonstrated that a combined measurement of neutrophil phagocytic capacity, immature granulocyte (IG) count and plasma cell-free DNA (cfDNA) levels on the day of injury gave good discriminatory power for the prediction of later sepsis development. However, limited by a small sample size, single-centre design and focus on adult burns patients, these biomarkers require prospective validation in a larger patient cohort. The Scientific Investigation of the Biological Pathways Following Thermal Injury-2 study aims to prospectively validate neutrophil phagocytic activity, IG count and plasma cfDNA levels as early prognostic biomarkers of sepsis in thermally injured adult and paediatric patients. METHODS AND ANALYSIS: This multicentre, longitudinal, observational cohort study will enrol 245 paediatric and adult patients with moderate to severe burns within 24 hours of injury. Blood samples will be obtained at 19 postinjury time points (days 1-14, day 28, months 3, 6, 12 and 24) and analysed for neutrophil phagocytic activity, IG count and cfDNA levels. Patients will be screened daily for sepsis using the 2007 American Burn Association diagnostic criteria for sepsis. In addition, daily multiple organ dysfunction syndrome and Sequential Organ Failure Assessment Scores will be recorded relationships between neutrophil phagocytic activity, IG count and plasma cfDNA levels on day 1 of injury and the development of sepsis will be examined using logistic regression models. ETHICS AND DISSEMINATION: This study received ethics approval from the West Midlands, Coventry and Warwickshire Research Ethics Committee (REC reference:16/WM/0217). Findings will be presented at national and international conferences, and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04693442.


Subject(s)
Burns , Sepsis , Adult , Child , Cohort Studies , Humans , Longitudinal Studies , Multicenter Studies as Topic , Neutrophils , Observational Studies as Topic , Prospective Studies , Sepsis/diagnosis
14.
BMJ Open ; 11(7): e040823, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312190

ABSTRACT

INTRODUCTION: The improvements in short-term outcome after severe trauma achieved through early resuscitation and acute care can be offset over the following weeks by an acute systemic inflammatory response with immuneparesis leading to infection, multiorgan dysfunction/multiorgan failure (MOF) and death. Serum levels of the androgen precursor dehydroepiandrosterone (DHEA) and its sulfate ester DHEAS, steroids with immune-enhancing activity, are low after traumatic injury at a time when patients are catabolic and immunosuppressed. Addressing this deficit and restoring the DHEA(S) ratio to cortisol may provide a range of physiological benefits, including immune modulatory effects. OBJECTIVE: Our primary objective is to establish a dose suitable for DHEA supplementation in patients after acute trauma to raise circulating DHEA levels to at least 15 nmol/L. Secondary objectives are to assess if DHEA supplementation has any effect on neutrophil function, metabolic and cytokine profiles and which route of administration (oral vs sublingual) is more effective in restoring circulating levels of DHEA, DHEAS and downstream androgens. METHODS AND ANALYSIS: A prospective, phase II, single-centre, cross-sectional, randomised study investigating Dehydroepiandrosterone supplementation and its profile in trauma, with a planned recruitment between April 2019 and July 2021, that will investigate DHEA supplementation and its effect on serum DHEA, DHEAS and downstream androgens in trauma. A maximum of 270 patients will receive sublingual or oral DHEA at 50, 100 or 200 mg daily over 3 days. Females aged ≥50 years with neck of femur fracture and male and female major trauma patients, aged 16-50 years with an injury severity score ≥16, will be recruited. ETHICS AND DISSEMINATION: This protocol was approved by the West Midlands - Coventry and Warwickshire Research Ethics Committee (Reference 18/WM/0102) on 8 June 2018. Results will be disseminated via peer-reviewed publications and presented at national and international conferences. TRIAL REGISTRATION: This trial is registered with the European Medicines Agency (EudraCT: 2016-004250-15) and ISRCTN (12961998). It has also been adopted on the National Institute of Health Research portfolio (CPMS ID:38158). TRIAL PROGRESSION: The study recruited its first patient on 2 April 2019 and held its first data monitoring committee on 8 November 2019. DHEA dosing has increased to 100 mg in both male cohorts and remains on 50 mg in across all female groups.


Subject(s)
Dehydroepiandrosterone , Dietary Supplements , Cross-Sectional Studies , Dehydroepiandrosterone Sulfate , Female , Humans , Male , Prospective Studies
15.
Front Immunol ; 12: 680134, 2021.
Article in English | MEDLINE | ID: mdl-34149717

ABSTRACT

Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Extracellular Traps/immunology , Humans
16.
Burns Trauma ; 9: tkab001, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33834079

ABSTRACT

BACKGROUND: Traumatic injury is associated with increased concentrations of cell-free DNA (cfDNA) in the circulation, which contribute to post-injury complications. The endonuclease deoxyribonuclease 1 (DNase-1) is responsible for removing 90% of circulating cfDNA. Recently, DNase activity was reported to be significantly reduced following major non-traumatic brain injury (TBI), but the processes responsible were not investigated. Moreover, it is not known how quickly following injury DNase activity is reduced and whether this also occurs after TBI. METHODS: At 3 post-injury time points (≤1, 4-12 and 48-72 hours), blood samples were obtained from 155 adult trauma patients that had sustained an isolated TBI (n = 21), TBI with accompanying extracranial injury (TBI+) (n = 53) or an extracranial injury only (ECI) (n = 81). In addition to measuring cfDNA levels and the activity and expression of DNase, circulating concentrations of monomeric globular action (G-actin), an inhibitor of DNase-1, and the actin scavenging proteins gelsolin (GSN) and vitamin D binding protein (VDBP) were determined and values compared to a cohort of healthy controls. RESULTS: Significantly elevated concentrations of plasma cfDNA were seen in TBI, TBI+ and ECI patients at all study time points when compared to healthy controls. cfDNA levels were significantly higher at ≤1 hour post-injury in ECI patients who subsequently developed multiple organ dysfunction syndrome when compared to those who did not. Plasma DNase-1 protein was significantly elevated in all patient groups at all sampling time points. In contrast, DNase enzyme activity was significantly reduced, with this impaired function evident in TBI+ patients within minutes of injury. Circulating concentrations of G-actin were elevated in all patient cohorts in the immediate aftermath of injury and this was accompanied by a significant reduction in the levels of GSN and VDBP. CONCLUSIONS: The post-traumatic increase in circulating cfDNA that occurs following extracranial trauma and TBI is accompanied by reduced DNase activity. We propose that, secondary to reduced GSN and VDBP levels, elevated circulating concentrations of G-actin underlie the post-injury reduction in DNase activity. Reducing circulating cfDNA levels via therapeutic restoration of DNase-1 activity may improve clinical outcomes post-injury.

17.
Metabolites ; 12(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35050151

ABSTRACT

Recent advances in emergency medicine and the co-ordinated delivery of trauma care mean more critically-injured patients now reach the hospital alive and survive life-saving operations. Indeed, between 2008 and 2017, the odds of surviving a major traumatic injury in the UK increased by nineteen percent. However, the improved survival rates of severely-injured patients have placed an increased burden on the healthcare system, with major trauma a common cause of intensive care unit (ICU) admissions that last ≥10 days. Improved understanding of the factors influencing patient outcomes is now urgently needed. We investigated the serum metabolomic profile of fifty-five major trauma patients across three post-injury phases: acute (days 0-4), intermediate (days 5-14) and late (days 15-112). Using ICU length of stay (LOS) as a clinical outcome, we aimed to determine whether the serum metabolome measured at days 0-4 post-injury for patients with an extended (≥10 days) ICU LOS differed from that of patients with a short (<10 days) ICU LOS. In addition, we investigated whether combining metabolomic profiles with clinical scoring systems would generate a variable that would identify patients with an extended ICU LOS with a greater degree of accuracy than models built on either variable alone. The number of metabolites unique to and shared across each time segment varied across acute, intermediate and late segments. A one-way ANOVA revealed the most variation in metabolite levels across the different time-points was for the metabolites lactate, glucose, anserine and 3-hydroxybutyrate. A total of eleven features were selected to differentiate between <10 days ICU LOS vs. >10 days ICU LOS. New Injury Severity Score (NISS), testosterone, and the metabolites cadaverine, urea, isoleucine, acetoacetate, dimethyl sulfone, syringate, creatinine, xylitol, and acetone form the integrated biomarker set. Using metabolic enrichment analysis, we found valine, leucine and isoleucine biosynthesis, glutathione metabolism, and glycine, serine and threonine metabolism were the top three pathways differentiating ICU LOS with a p < 0.05. A combined model of NISS and testosterone and all nine selected metabolites achieved an AUROC of 0.824. Differences exist in the serum metabolome of major trauma patients who subsequently experience a short or prolonged ICU LOS in the acute post-injury setting. Combining metabolomic data with anatomical scoring systems allowed us to discriminate between these two groups with a greater degree of accuracy than that of either variable alone.

18.
Platelets ; 32(2): 273-279, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33242293

ABSTRACT

Platelet-rich plasma (PRP) is an autologous preparation that has been claimed to improve healing and mechanobiological properties of tendons both in vitro and in vivo. In this sub-study from the PATH-2 (PRP in Achilles Tendon Healing-2) trial, we report the cellular and growth factor content and quality of the Leukocyte-rich PRP (L-PRP) (N = 103) prepared using a standardized commercial preparation method across 19 different UK centers. Baseline whole blood cell counts (red cells, leukocyte and platelets) demonstrated that the two groups were well-matched. L-PRP analysis gave a mean platelet count of 852.6 x 109/L (SD 438.96), a mean leukocyte cell count of 15.13 x 109/L (SD 10.28) and a mean red blood cell count of 0.91 x 1012/L (SD 1.49). The activation status of the L-PRP gave either low or high expression levels of the degranulation marker CD62p before and after ex-vivo platelet activation respectively. TGF-ß, VEGF, PDGF, IGF and FGFb mean concentrations were 131.92 ng/ml, 0.98 ng/ml, 55.34 ng/ml, 78.2 ng/ml and 111.0 pg/ml respectively with expected correlations with both platelet and leukocyte counts. While PATH-2 results demonstrated that there was no evidence L-PRP is effective for improving clinical outcomes at 24 weeks after Achilles tendon rupture, our findings support that the majority of L-PRP properties were within the method specification and performance.


Subject(s)
Achilles Tendon/drug effects , Platelet-Rich Plasma/metabolism , Wound Healing/drug effects , Achilles Tendon/physiopathology , Female , Humans , Male
19.
Front Immunol ; 11: 573662, 2020.
Article in English | MEDLINE | ID: mdl-33123152

ABSTRACT

Bearing a strong resemblance to the phenotypic and functional remodeling of the immune system that occurs during aging (termed immunesenescence), the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19), is characterized by an expansion of inflammatory monocytes, functional exhaustion of lymphocytes, dysregulated myeloid responses and the presence of highly activated senescent T cells. Alongside advanced age, male gender and pre-existing co-morbidities [e.g., obesity and type 2 diabetes (T2D)] are emerging as significant risk factors for COVID-19. Interestingly, immunesenescence is more profound in males when compared to females, whilst accelerated aging of the immune system, termed premature immunesenescence, has been described in obese subjects and T2D patients. Thus, as three distinct demographic groups with an increased susceptibility to COVID-19 share a common immune profile, could immunesenescence be a generic contributory factor in the development of severe COVID-19? Here, by focussing on three key aspects of an immune response, namely pathogen recognition, elimination and resolution, we address this question by discussing how immunesenescence may weaken or exacerbate the immune response to SARS-CoV-2. We also highlight how aspects of immunesenescence could render potential COVID-19 treatments less effective in older adults and draw attention to certain therapeutic options, which by reversing or circumventing certain features of immunesenescence may prove to be beneficial for the treatment of groups at high risk of severe COVID-19.


Subject(s)
Cellular Senescence/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Aging/immunology , Betacoronavirus/immunology , COVID-19 , Diabetes Mellitus, Type 2/immunology , Female , Humans , Male , Monocytes/immunology , Neutrophils/immunology , Obesity/immunology , Pandemics , Risk Factors , SARS-CoV-2 , T-Lymphocytes/immunology
20.
Haematologica ; 105(5): 1248-1261, 2020 05.
Article in English | MEDLINE | ID: mdl-31467123

ABSTRACT

Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine. These interactions resulted in the progressive transfer of the platelet adhesion receptor GPIbα to monocytes. GPIbα+-monocytes tethered and rolled on immobilised von Willebrand Factor or were recruited and activated on endothelial cells treated with TGF-ß1 to induce the expression of von Willebrand Factor. In both models monocyte adhesion was ablated by a function-blocking antibody against GPIbα. Monocytes could also bind platelet-derived extracellular vesicle in mouse blood in vitro and in vivo Intratracheal instillations of diesel nanoparticles, to model chronic pulmonary inflammation, induced accumulation of GPIbα on circulating monocytes. In intravital experiments, GPIbα+-monocytes adhered to the microcirculation of the TGF-ß1-stimulated cremaster muscle, while in the ApoE-/- model of atherosclerosis, GPIbα+-monocytes adhered to the carotid arteries. In trauma patients, monocytes bore platelet markers within 1 hour of injury, the levels of which correlated with severity of trauma and resulted in monocyte clearance from the circulation. Thus, we have defined a novel thrombo-inflammatory pathway in which platelet-derived extracellular vesicles transfer a platelet adhesion receptor to monocytes, allowing their recruitment in large and small blood vessels, and which is likely to be pathogenic.


Subject(s)
Blood Platelets , Extracellular Vesicles , Animals , Endothelial Cells , Humans , Inflammation , Mice , Monocytes , Platelet Glycoprotein GPIb-IX Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...